時間:2022-07-09 21:36:10
序論:寫作是一種深度的自我表達。它要求我們深入探索自己的思想和情感,挖掘那些隱藏在內心深處的真相,好投稿為您帶來了七篇機械系統設計論文范文,愿它們成為您寫作過程中的靈感催化劑,助力您的創作。
舞臺吊標分為電動和手動兩種,它主要用于懸吊和升降各種幕布、燈具、布景等物,是上下左右頻繁移動機械,所以吊桿也是舞臺安全的主要系數。電動吊桿的作用可以降低工作人員的勞動強度,起至事半功倍的效果,如果一個舞臺的深度有14米,我們可以為他設置電動吊桿38道,其中24道景桿(含一道前沿幕)、14道備用吊桿【包括2道二維側光燈架】,一道升降電影銀幕架、1道燈光渡橋及無極均勻伸縮大幕機1套。
通過我們多年使用舞臺吊桿機械的經驗,我們認為泰州長江影視工程設備廠生產的產品,性能最穩定,安全最可靠,已經被上百家劇院采用。其運用了蝸輪蝸桿減速系統、材質為錫青銅,磨擦系數小,傳動效率高。有防沖頂保護、上下限保護。滑輪為鍍鋅防跳繩花輪,安裝不須焊接在滑輪梁上,如焊死,以后維修、調整極不方便。長江影視設備廠的滑輪都是用抱箍羅栓固定。當吊桿升、降至某一位置時,ABS抱死系統立即斷火緊鎖馬達,這樣確保吊桿停至此位置下滑系數最小,安全性達到最高。且強弱電分開控制。
所以在這里設計了舞臺機械的具體參數:
A、景物吊桿技術參數如下:
電機功率:2.2KW吊點數:4個
升降速度:0.27m/s桿體長暫定:16米
電機轉速:1400轉/分速比為:40:1
提升荷載為:400KG桿體為鋼管
控制方式:點控
該型吊相具有上下限位,沖頂保護裝置。制動形式:蝸輪、蝸桿自鎖,電磁抱閘。噪音≤45dB.
吊桿桿體用兩根Φ50黑鐵管焊接成吊桿,中間接頭內襯鋼管。最后均刷防銹漆兩遍,外層噴黑色油漆。
B、燈光吊桿技術參數如下:
電機功率:3KW吊點數:4個
升降速度:0.18m/s桿體長暫定:14米
電機轉速:1400轉/分速比為:50:1
提升荷載為:600KG桿體為?50黑鐵管吊桿
控制方式:點控
該型吊桿具有上下限位,沖頂保護裝置。制動形式:蝸輪、蝸桿自鎖,電磁抱閘。噪音≤45dB。
吊桿桿體用Φ50;黑鐵管焊接成吊桿,中間接頭內襯鋼管。最后均刷防銹漆兩遍,外層噴黑色油漆。
舞臺機械設計原則
(節選)1、鋼結構
a)所有承重的鋼結構件,其結構剛度大于1:1000
b)鋼結構件應設計合理,鋼結構及其接頭應能承受最大額定載荷和由緊急停車造成的沖擊載荷;
c)鋼結構件所用材料應符合有關標準;
d)鋼結構焊縫須符合有關規定,主要焊縫應進行無損探傷檢查;
2、吊物與卷揚裝置
①卷揚機卷揚機上的電動機和制動器應聯合動作,只有電動機電源接通時,才能許可制動器打開;萬一制動器打開,而電動機沒有接通電源時,只許吊桿(負載)靜止或低速下降;
②卷筒組件
卷筒直徑不小于鋼絲繩直徑的30倍;
卷筒用優質灰鑄鐵或厚壁無縫鋼管焊接并經精確機械加工而成;
鋼絲繩嶼卷筒繩槽中心線的夾角應中于2.5度;
卷筒組件應設計防止鋼絲繩在負荷或松馳狀態下跳槽的裝置。③滑輪
滑輪的節圓直徑,不應小于鋼索直徑的28倍;
滑輪及滑輪組應采用滾動軸承支承;
滑輪及滑輪組應有防止鋼絲繩脫槽的保護裝置。
鋼絲繩與滑輪的偏角不超過2.5度。
④鋼絲繩
懸吊鋼絲繩應為帶有人造纖維芯的軟鋼絲繩;
預先檢驗:供貨時所有的鋼絲繩均應分批測試;
現場處理:鋼絲繩在安裝期間應小心處理,不能以任何方式技術打結或損壞;受損或變形的鋼絲繩不予接收。所有切斷頭都應妥善處理;
安裝:鋼絲繩不應與設備的固定或移動部分磨擦,在有損壞或卡住風險的地方,應采取正確防護措施;
懸掛支承:穿過頂樓的轉向滑輪或在其它需要懸掛支承的地方,鋼絲繩應在滑輪上進行支承。
⑤鋼絲繩配件
鋼絲繩配件應采用表面鍍鋅的標準配件;
鋼絲繩配件規格尺寸與鋼絲繩匹配;
使用鋼絲繩夾的地方,每個接頭至少使便用3個正確安裝的繩夾。
3、吊桿
a)吊桿采用圓管桿或桁架桿,管子或構架應平直、無扭曲變形;
b)管桿采用優質無縫鋼管制造;
c)桿的接頭應盡量少,接頭采用實心圓棒與管子配合;
d)懸吊鋼絲繩的端頭用單獨安裝于桿上的調節裝置進行調整;
e)管端:管端應配有帶醒目顏色的永久性塑料帽或鋼封頭;
4、限位、定位、超程開關
a)限位及定位開關
i.行程終止限們開關:行程終止限位開關應能測出設備正常行程綹并使之停車;
ii.中間定位開關:在合適的地方配置中間定位開關和減速開關;
iii.直接碰撞限位開關:行程終止限位開關也可選用直接碰撞限位開關。
b)超程限位開關
超程限位開關:所有電動設備都應安裝單獨的超程限位開關,以防行程終止限位開關發生故障導致機械損傷。
4、電動機
a)工作循環:舞臺機械按斷續操作設定。每個工作循環規定為在載荷條件下6次全行程運轉并有15min停頓;
根據國家機械設計制造及其自動化專業畢業培養標準中對畢業能力要求之4“具有設計機械系統、部件的能力”要求,整合現有教學內容,形成了基礎知識遞增和設計能力遞進的機械設計類課程教學環節結構。其中先修課程包括數學類、工程力學、機械制圖、公差與技術測量等基礎課和專業基礎課。為達到“具有設計機械系統、部件的能力”的畢業要求,設計了課程教學及課內實驗、基礎設計能力培養、創新設計能力培養三個能力遞進培養環節。
2機械設計類課程教學及課內實驗
課程教學及課內實驗教學環節分為機械原理和機械設計兩個部分,每部分。含課內實驗,課程內容及培養目標如下:機械原理課程是一門培養學生機械機構運動設計與分析的技術基礎課,主要研究機構的結構分析、運動分析和動力分析,常用機構設計的基本理論和方法,機械系統傳動方案的規劃與設計,其主要任務是培養學生:第一,理論聯系實際的學風,設計實踐能力和創新精神。第二,掌握機構運動方案設計的能力。第三,具有機械系統運動簡圖的繪制,計算機輔助機構分析和設計的能力。機械原理實驗教學是機械原理課程教學中的實踐環節。在實驗中通過安排部分課程基本理論的驗證性實驗,使學生進一步加深對課堂教學內容的理解。通過增設一些綜合性、設計性實驗,培養學生基本知識、基礎理論與實際項目需求的理論知識應用能力,同時培養學生創新意識和能力。通過設立較多的選修實驗,促進學生的個性發展。機械設計課程是一門培養學生機械設計能力的技術基礎課,在教學內容方面著重掌握機械設計的基本知識、基本理論、基本方法和創新思維,通過對本課程的學習,使學生掌握常用機構和機器中各種通用零件的基本理論和基本知識,初步具有機械結構方面的分析、設計能力,同時注意培養學生正確的設計思想和嚴謹的工作作風。機械設計實驗教學通過設立部分驗證性實驗,使學生進一步加深理解課堂教學的內容;通過設立一些綜合性、設計性實驗,培養學生理論聯系實際的能力及機械結構設計的創新意識和創新能力;通過強調學生參與實驗的全過程,培養學生的動手操作能力;通過設立較多的選做實驗,滿足學生的求知欲,促進學生的個性發展。
3基礎設計能力培養
機械設計課程設計是機械設計基礎類課程的重要實踐性環節,通過對機械傳動裝置和簡單機械的設計,使學生綜合運用機械設計課程和其他先修課程的理論和實際知識,熟悉機械設計的一般規律,掌握機械通用零部件及簡單機械的設計理論及設計方法。培養學生理論聯系實際的正確設計思想,樹立工程意識,培養獨立分析和解決工程實際問題的能力,為畢業設計和以后從事工程設計工作打下良好的基礎。課程的教學目的:第一,學習機械設計的一般方法、步驟,掌握機械設計的一般規律。第二,學會從機器的功能要求出發,合理選擇傳動機構的類型,制定傳動設計方案,正確計算零件的工作能力,確定它的結構、形狀、尺寸及材料,并考慮制造工藝、使用、維護、經濟和安全等問題,培養機械設計能力。第三,進行機械設計基本技能訓練,例如計算、繪圖,運用標準、規范、手冊、圖冊和設計資料,以及使用經驗數據和處理數據等。第四,通過編寫設計說明書,提高學生文字表達能力,掌握撰寫技術文件的有關要求;培養學生運用計算機撰寫論文的能力。第五,訓練學生用CAD繪圖的能力。機械綜合課程設計是形成機械裝備設計能力的重要實踐性教學環節。內容以車床或銑床的主傳動系統設計為主線,以所學過的機械制造裝備的基礎知識為支撐,完成主傳動系統設計、操縱裝置布置、工程分析計算等環節的訓練。其目的是在相關先修課程學習后,進行機械結構設計綜合訓練,使學生掌握機械系統分析和設計的基本步驟和方法,培養和鍛煉學生綜合運用所學知識解決實際工程問題的能力。
4創新設計能力培養
學生創新設計能力培養包括機械產品創新設計與仿真和機械創新設計與制作兩個環節:機械產品創新設計與仿真是學生以項目組的形式自主開展的為期一年的研發與制作項目,在學院的統一命題下完成一項任務。提高學生自主學習、問題求解、團隊協作、項目管理、綜合創新等方面的能力和素質。機械創新設計與制作是結合學生已有的知識儲備,充分發揮學生的創新設計思維,通過機構綜合模擬現實自然界生物的動作行為,并輔以相應的控制系統達到機構的協調運動。在教師的啟發和指導下,學生以組為單位自主地進行相關內容科技文獻檢索、方案設計、虛擬仿真、繪制加工圖紙、撰寫設計說明書并進行答辯,通過工程實踐培養學生靈活運用所學機械設計知識的能力。
5結論
[關鍵詞]游戲引擎;機械動力仿真;虛擬現實技術
中圖分類號:TP391.9;TD672 文獻標識碼:A 文章編號:1009-914X(2014)33-0225-02
一、引言
三維游戲由于引擎技術在建模技術、物理引擎技術、復雜環境的高質量實時渲染技術、動畫技術、人工智能技術、對象的行為控制技術等各方面不斷的完善和強大,已經極大地引起了人們的關注和重視。游戲引擎不再僅用于游戲娛樂產業的開發,更多的滲透到了教育軟件開發、虛擬現實應用、動畫影視(特技)制作、軍事訓練、實時模擬等人類生活的各個領域。極大地改變了人們的生活方式和思維方式。
游戲引擎技術尤其物理引擎技術不斷的研究發展,讓我們意識到仿真虛擬機械動力的可能性。利用游戲引擎虛擬機械運動,將為開發教育游戲中的虛擬物理實驗、網上數字科技館、娛樂型游戲中的機械道具和多樣化游戲任務等具有重要的應用價值和研究意義。
傳統的機械動力仿真技術和虛擬現實技術雖然在一定程度上也能虛擬機械的運動,但是由于那些技術不可避免的弊端對機械動力仿真技術應用在其他領域形成了瓶頸。傳統的機械工業仿真技術缺乏交互性,設計復雜,表現單調。隨著多媒體技術、計算機動畫技術、虛擬現實技術、網絡技術等技術的滲入,以VRML(Virtual Reality Modeling Language虛擬現實造型語言)或Cult3D為代表的技術給機械仿真領域帶來了交互性,但是由于傳統的虛擬現實技術固有的特性,如運動行為的硬編碼、交互性差、畫面不流暢、系統實現復雜等,使得基于游戲引擎技術虛擬機械動力的技術具有很大的優勢和更大的發展前景。
本論文研究的技術充分利用了游戲平臺的優勢,它不僅具有傳統虛擬現實系統所有的優點,而且具有3D游戲般的交互性和逼真的動力學模擬。從開發角度而言,游戲引擎的實時渲染能力、快速的計算能力、組件化、可重用性以及面向對象的編程方式等,都使得應用游戲引擎成為一種非常便捷和有效的仿真技術手段。本文描述了利用游戲引擎模擬簡單的機械動力實例的核心技術。
二、機械動力仿真技術研究背景
概念設計是機械設計過程中的最初階段,主要目的是獲得產品的本質形狀。[3]機械仿真技術的發展為機械工業概念設計注入了新的活力。計算機運算處理能力的提高為機械系統的仿真提供了更好的基礎。
我國機械系統傳統的計算機輔助工具多數是AutoCAD, Pro/E, Solid Works, Solid Edge, 3D MAX等2D和3D軟件,此類建模軟件含有大量的圖形文件,容量較大,不利于網上傳輸和遠程控制。同時這種方式建立的三維模型是靜態的,動畫是設計者事先設計好的一副副二維動畫,用戶只是被動的接受,而不能按照自己的意愿進行實時交互式仿真。
虛擬現實技術作為一種更為人性化的交互技術,近幾年來逐漸滲透到各個應用領域。虛擬現實技術的沉浸特征、交互特征和構想特征,剛好彌補了上述傳統方法的不足。因此,運用虛擬現實的方法實現機械設計系統成為必然。傳統的機械仿真都是代碼編寫控制的運動效果,沒有實現通過物體間力的作用而讓物體產生運動,所以不免比較生硬,不能具有可復用性和柔性。
綜上可知,機械工業虛擬仿真技術由于其復雜性、綜合性決定了開發的困難,因此勢必需要一些工具來輔助開發,游戲引擎由于其本身的特點,成為開發機械工業虛擬系統的有力工具。
三、游戲引擎技術
1.三維游戲引擎
一般而言,三維游戲引擎包括:引擎內核、三維圖形引擎、物理引擎、人工智能系統、3D模型和圖像庫、網絡引擎、輸入系統。三維游戲引擎中各子系統關系可由(圖1)表示。
2.游戲引擎技術的優勢
(1)利用游戲引擎可以簡化系統制作的復雜度,縮短開發時間,降低制作成本。
(2)游戲引擎中強大的物理引擎為該機械動力仿真系統提供了保障,這也是不同于其他虛擬現實技術的閃光點。
(3)該游戲引擎能快速嵌入到網頁中運行,因此,極大的活躍了網頁式三維虛擬現實技術,因為傳統的三維網頁虛擬技術在WEB中運行效果不是很好,運行緩慢,效果單調,交互性差,游戲引擎技術的支持在一定程度上可彌補這些不足。
(4)游戲引擎的最大特點是可以實時渲染,這樣使得開發者可以及時瀏覽和調整系統。Unity3D游戲引擎甚至可以支持在程序運行時改動場景中物體的屬性。這樣的實時性改變,使得開發者能迅速獲得最佳的設置效果值。
(5)基于游戲引擎技術開發的機械動力仿真系統,具有游戲般的交互能力,活躍了機械展示的表達方式。
(6)在游戲引擎平臺上的二次編程代碼被稱為“腳本”,大多數腳本語言都是面向對象的編程特點,具有封裝、多態、可復用性等特性。簡單易學,使虛擬系統設計者易于開發應用。
四、主要結論
3D游戲引擎技術最大的特點就是它把一個程序中可以重復利用的部分,以精巧的模塊組織起來,將其規格化、最佳化,以利于程序重用技術。利用引擎不僅可以開發出“景物真實、動作真實、感覺真實”的三維系統,更重要的是利用它我們可以節省大量的人員和資金,簡化系統制作的復雜度,縮短開發時間,降低制作成本,并且游戲引擎普遍具有的FPS(First Person Shooting第一人稱射擊游戲)特性,這一特點可以巧妙的應用于交互設計中。游戲引擎的實時渲染、動態編譯和可視化編輯功能有效解決了傳統的虛擬現實技術中存在的渲染耗費時間和硬件成本的問題。
3D游戲引擎最吸引人的是它的強大的PhysX物理引擎和真實的圖形渲染引擎。強大的功能會提升研究的成功性。從開發方面考慮,該引擎的腳本語言近似c#或javascript,使得開發輕車熟路,而且腳本是動態編譯的,運行速度和匯編接近,不會因為腳本的問題而影響系統的執行效率。從方面考慮,該引擎支持跨平臺,而且用該引擎開發的作品可以通過網頁直接運行,是3D虛擬現實作品輕松實現網頁漫游的良好解決方案。
參考文獻
[1] 楊紅娟,周以齊,石柏成,陳成軍.機械系統虛擬現實建模方法的研究.中國圖像圖形學會.642~646.
[2] 劉強,劉春全.機械動力仿真軟件在抽油機運動學上的應用.裝備制造技術,2008年,第12期.49~51.
[3] 石其樂.簡易型虛擬現實技術的實現.寧夏工程技術,2003 年8 月,第2 卷第3期:227~245
關鍵詞:問題; 先進制造技術; 前沿科學; 應用前景
論文
制造業是現代國民經濟和綜合國力的重要支柱,其生產總值一般占一個國家國內生產總值的20%~55%。在一個國家的企業生產力構成中,制造技術的作用一般占60%左右。專家認為,世界上各個國家經濟的競爭,主要是制造技術的競爭。其競爭能力最終體現在所生產的產品的市場占有率上。隨著經濟技術的高速發展以及顧客需求和市場環境的不斷變化,這種競爭日趨激烈,因而各國政府都非常重視對先進制造技術的研究。
1 當前制造科學要解決的問題
當前制造科學要解決的問題主要集中在以下幾方面:
(1)制造系統是一個復雜的大系統,為滿足制造系統敏捷性、快速響應和快速重組的能力,必須借鑒信息科學、生命科學和社會科學等多學科的研究成果,探索制造系統新的體系結構、制造模式和制造系統有效的運行機制。制造系統優化的組織結構和良好的運行狀況是制造系統建模、仿真和優化的主要目標。制造系統新的體系結構不僅對制造企業的敏捷性和對需求的響應能力及可重組能力有重要意義,而且對制造企業底層生產設備的柔性和可動態重組能力提出了更高的要求。生物制造觀越來越多地被引入制造系統,以滿足制造系統新的要求。
(2)為支持快速敏捷制造,幾何知識的共享已成為制約現代制造技術中產品開發和制造的關鍵問題。例如在計算機輔助設計與制造(CAD/CAM)集成、坐標測量(CMM)和機器人學等方面,在三維現實空間(3-Real Space)中,都存在大量的幾何算法設計和分析等問題,特別是其中的幾何表示、幾何計算和幾何推理問題;在測量和機器人路徑規劃及零件的尋位(如Localization)等方面,存在C-空間
(配置空間Configuration Space)的幾何計算和幾何推理問題;在物體操作(夾持、抓取和裝配等)描述和機器人多指抓取規劃、裝配運動規劃和操作規劃方面則需要在旋量空間(Screw Space)進行幾何推理。制造過程中物理和力學現象的幾何化研究形成了制造科學中幾何計算和幾何推理等多方面的研究課題,其理論有待進一步突破,當前一門新學科--計算機幾何正在受到日益廣泛和深入的研究。
(3)在現代制造過程中,信息不僅已成為主宰制造產業的決定性因素,而且還是最活躍的驅動因素。提高制造系統的信息處理能力已成為現代制造科學發展的一個重點。由于制造系統信息組織和結構的多層次性,制造信息的獲取、集成與融合呈現出立體性、信息度量的多維性、以及信息組織的多層次性。在制造信息的結構模型、制造信息的一致性約束、傳播處理和海量數據的制造知識庫管理等方面,都還有待進一步突破。
(4)各種人工智能工具和計算智能方法在制造中的廣泛應用促進了制造智能的發展。一類基于生物進化算法的計算智能工具,在包括調度問題在內的組合優化求解技術領域中,受到越來越普遍的關注,有望在制造中完成組合優化問題時的求解速度和求解精度方面雙雙突破問題規模的制約。制造智能還表現在:智能調度、智能設計、智能加工、機器人學、智能控制、智能工藝規劃、智能診斷等多方面。
這些問題是當前產品創新的關鍵理論問題,也是制造由一門技藝上升為一門科學的重要基礎性問題。這些問題的重點突破,可以形成產品創新的基礎研究體系。
2 現代機械工程的前沿科學
不同科學之間的交叉融合將產生新的科學聚集,經濟的發展和社會的進步對科學技術產生了新的要求和期望,從而形成前沿科學。前沿科學也就是已解決的和未解決的科學問題之間的界域。前沿科學具有明顯的時域、領域和動態特性。工程前沿科學區別于一般基礎科學的重要特征是它涵蓋了工程實際中出現的關鍵科學技術問題。
超聲電機、超高速切削、綠色設計與制造等領域,國內外已經做了大量的研究工作,但創新的關鍵是機械科學問題還不明朗。大型復雜機械系統的性能優化設計和產品創新設計、智能結構和系統、智能機器人及其動力學、納米摩擦學、制造過程的三維數值模擬和物理模擬、超精度和微細加工關鍵工藝基礎、大型和超大型精密儀器裝備的設計和制造基礎、虛擬制造和虛擬儀器、納米測量及儀器、并聯軸機床、微型機電系統等領域國內外雖然已做了不少研究,但仍有許多關鍵科學技術問題有待解決。
信息科學、納米科學、材料科學、生命科學、管理科學和制造科學將是改變21世紀的主流科學,由此產生的高新技術及其產業將改變世界的面貌。因此,與以上領域相交叉發展的制造系統和制造信息學、納米機械和納米制造科學、仿生機械和仿生制造學、制造管理科學和可重構制造系統等會是21世紀機械工程科學的重要前沿科學。
2.1 制造科學與信息科學的交叉--制造信息科學
機電產品是信息在原材料上的物化。許多現代產品的價值增值主要體現在信息上。因此制造過程中信息的獲取和應用十分重要。信息化是制造科學技術走向全球化和現代化的重要標志。人們一方面對制造技術開始探索產品設計和制造過程中的信息本質,另一方面對制造技術本身加以改造,以使得其適應新的信息化制造環境。隨著對制造過程和制造系統認識的加深,研究者們正試圖以全新的概念和方式對其加以描述和表達,以進一步達到實現控制和優化的目的。
與制造有關的信息主要有產品信息、工藝信息和管理信息,這一領域有如下主要研究方向和內容:
(1) 制造信息的獲取、處理、存儲、傳遞和應用,大量制造信息向知識和決策轉化。
(2) 非符號信息的表達、制造信息的保真傳遞、制造信息的管理、非完整制造信息狀態下的生產決策、虛擬管理制造、基于網絡環境下的設計和制造、制造過程和制造系統中的控制科學問題。
這些內容是制造科學和信息科學基礎融合的產物,構成了制造科學中的新分支--制造信息學。
2.2 微機械及其制造技術研究
微型電子機械系統(MEMS),是指集微型傳感器、微型執行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機電系統。MEMS技術的目標是通過系統的微型化、集成化來探索具有新原理、新功能的元件和系統。MEMS的發展將極大地促進各類產品的袖珍化、微型化,成數量級的提高器件與系統的功能密度、信息密度與互聯密度,大幅度地節能、節材。它不僅可以降低機電系統的成本,而且還可以完成許多大尺寸機電系統無法完成的任務。例如用尖端直徑為5μm的微型鑷子可以夾起一個紅細胞;制造出3mm大小能夠開動的小汽車;可以在磁場中飛行的像蝴蝶大小的飛機等。MEMS技術的發展開辟了技術全新的領域和產業,具有許多傳統傳感器無法比擬的優點,因此在制造業、航空、航天、交通、通信、農業、生物醫學、環境監控、軍事、家庭以及幾乎人們接觸到的所有領域中都有著十分廣闊的應用前景。
微機械是機械技術與電子技術在納米尺度上相融合的產物。早在1959年就有科學家提出微型機械的設想,1962年第一個硅微型壓力傳感器問世。1987年美國加州大學伯克利分校研制出轉子直徑為60~120μm的硅微型靜電電動機,顯示出利用硅微加工工藝制作微小可動結構并與集成電路兼容制造微小系統的潛力。微機械技術有可能像20世紀的微電子技術那樣,在21世紀對世界科技、經濟發展和國防建設產生巨大的影響。近10年來,微機械的發展令人矚目。其特點如下:相當數量的微型元器件(微型結構、微型傳感器和微型執行器等)和微系統研究成功,體現了其現實的和潛在的應用價值;多種微型制造技術的發展,特別是半導體微細加工等技術已成為微系統的支撐技術;微型機電系統的研究需要多學科交叉的研究隊伍,微型機電系統技術是在微電子工藝的基礎上發展的多學科交叉的前沿研究領域,涉及電子工程、機械工程、材料工程、物理學、化學以及生物醫學等多種工程技術和科學。轉貼于
目前對微觀條件下的機械系統的運動規律,微小構件的物理特性和載荷作用下的力學行為等尚缺乏充分的認識,還沒有形成基于一定理論基礎之上的微系統設計理論與方法,因此只能憑經驗和試探的方法進行研究。微型機械系統研究中存在的關鍵科學問題有微系統的尺度效應、物理特性和生化特性等。微系統的研究正處于突破的前夜,是亟待深入研究的領域。
2.3 材料制備/零件制造一體化和加工新技術基礎
材料是人類進步的里程碑,是制造業和高技術發展的基礎。每一種重要新材料的成功制備和應用,都會推進物質文明,促進國家經濟實力和軍事實力的增強。21世紀中,世界將由資源消耗型的工業經濟向知識經濟轉變,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的設計實現定量化、數字化;要求材料和零件的制備快速、高效并實現二者一體化、集成化。材料和零件的數字化設計與擬實仿真優化是實現材料與零件的高效優質制備/制造及二者一體化、集成化制造的關鍵。一方面,通過計算機完成擬實仿真優化后可以減少材料制備與零件制造過程中的實驗性環節,獲得最佳的工藝方案,實現材料與零件的高效優質制備/制造;另一方面,根據不同材料性能的要求,如彈性模量、熱膨脹系數、電磁性能等,研究材料和零件的設計形式。進而結合傳統的去除材料式制造技術、增加材料式覆層技術等,研究多種材料組分的復合成形工藝技術。形成材料與零件的數字化制造理論、技術和方法,如快速成形技術采用材料逐漸增長的原理,突破了傳統的去材法和變形法機械加工的許多限制,加工過程不需要工具或模具,能迅速制造出任意復雜形狀又具有一定功能的三維實體模型或零件。
2.4 機械仿生制造
21世紀將是生命科學的世紀,機械科學和生命科學的深度融合將產生全新概念的產品(如智能仿生結構),開發出新工藝(如生長成形工藝)和開辟一系列的新產業,并為解決產品設計、制造過程和系統中一系列難題提供新的解決方法。這是一個極富創新和挑戰的前沿領域。
地球上的生物在漫長的進化中所積累的優良品性為解決人類制造活動中的各種難題提供了范例和指南。從生命現象中學習組織與運行復雜系統的方法和技巧,是今后解決目前制造業所面臨許多難題的一條有效出路。仿生制造指的是模仿生物器官的自組織、自愈合、自增長與自進化等功能結構和運行模式的一種制造系統與制造過程。如果說制造過程的機械化、自動化延伸了人類的體力,智能化延伸了人類的智力,那么,"仿生制造"則可以說延伸了人類自身的組織結構和進化過程。
仿生制造所涉及的科學問題是生物的"自組織"機制及其在制造系統中的應用問題。所謂"自組織"是指一個系統在其內在機制的驅動下,在組織結構和運行模式上不斷自我完善、從而提高對于環境適應能力的過程。仿生制造的"自組織"機制為自下而上的產品并行設計、制造工藝規程的自動生成、生產系統的動態重組以及產品和制造系統的自動趨優提供了理論基礎和實現條件。
仿生制造屬于制造科學和生命科學的"遠緣雜交",它將對21世紀的制造業產生巨大的影響。
仿生制造的研究內容目前有兩個方面:
2.4.1 面向生命的仿生制造
研究生命現象的一般規律和模型,例如人工生命、細胞自動機、生物的信息處理技巧、生物智能、生物型的組織結構和運行模式以及生物的進化和趨優機制等;
2.4.2 面向制造的仿生制造
研究仿生制造系統的自組織機制與方法,例如:基于充分信息共享的仿生設計原理,基于多自律單元協同的分布式控制和基于進化機制的尋優策略;研究仿生制造的概念體系及其基礎,例如:仿生空間的形式化描述及其信息映射關系,仿生系統及其演化過程的復雜度計量方法。
機械仿生與仿生制造是機械科學與生命科學、信息科學、材料科學等學科的高度融合,其研究內容包括生長成形工藝、仿生設計和制造系統、智能仿生機械和生物成形制造等。目前所做的研究工作大多屬前沿探索性的工作,具有鮮明的基礎研究的特點,如果抓住機遇研究下去,將可能產生革命性的突破。今后應關注的研究領域有生物加工技術、仿生制造系統、基于快速原型制造技術的組織工程學,以及與生物工程相關的關鍵技術基礎等。 3 現代制造技術的發展趨勢
20世紀90年代以來,世界各國都把制造技術的研究和開發作為國家的關鍵技術進行優先發展,如美國的先進制造技術計劃AMTP、日本的智能制造技術(IMS)國際合作計劃、韓國的高級現代技術國家計劃(G--7)、德國的制造2000計劃和歐共體的ESPRIT和BRITE-EURAM計劃。
隨著電子、信息等高新技術的不斷發展,市場需求個性化與多樣化,未來現代制造技術發展的總趨勢是向精密化、柔性化、網絡化、虛擬化、智能化、綠色集成化、全球化的方向發展。
當前現代制造技術的發展趨勢大致有以下九個方面:
(1) 信息技術、管理技術與工藝技術緊密結合,現代制造生產模式會獲得不斷發展。
(2) 設計技術與手段更現代化。
(3) 成型及制造技術精密化、制造過程實現低能耗。
(4) 新型特種加工方法的形成。
(5) 開發新一代超精密、超高速制造裝備。
(6) 加工工藝由技藝發展為工程科學。
(7) 實施無污染綠色制造。
關鍵詞:機械類專業課程;改革創新
隨著科學技術的迅猛發展及社會對高素質運用型人才的需求, 我國各大高校已掀起了與學科專業結構調整相適應的課程體系改革。對教育教學內容、 素質教學模式、 教學手段等方面進行全面改革, 將科學的教育研究成果應用到專業建設中來,對傳統的課程設置進行合理地改革,探索、力求充分利用有限的時間資源, 提高學生知識結構,培養滿足現代社會發展需求的復合型綜合人才已是大勢所趨。
一、改革課程體系的必要性
隨著社會主義市場經濟體制的建立,科技進步和產業結構的調整,機械行業對高級應用型人才綜合能力的要求越來越高,高等工程教育從過去服從于計劃經濟徹底轉變到服務于社會主義市場經濟。與此相適應,我國全日制本科院校機械類專業課程逐漸以培養“高級應用型工程技術人才”為目標,依據市場需求設置專業培養方向,并面向生產、管理的第一線,突出實踐操作能力的特色。
二、建立機械類專業課程新體系
新課程體系包括通識課平臺,專業課平臺和實踐教學平臺,以下將作出詳細闡述。
(一)通識課平臺
通識課平臺包括通識必修課程和通識選修課程,通識課程的開設,主要考核學生是否掌握基本技能,是否具備超越精神、批判性思維和創新思維[1]。通識必修課主要包括思想政治理論課、英語、體育與健康,以及數理化等自然科學基礎課。通識必修課的設置不是針對某一專業,而是針對某大類專業開設的,是全日制本科學生必需掌握的知識和技能。通識必修課培養學生的基本素質,著眼于學生的可持續發展,為學生后期學習專業課打好基礎,旨在使學生獲得寬厚的公共基礎學科的知識。
通識選修課的設置是面向全院學生開設的教育課程,是為了拓寬學生的知識面,完善學生的知識結構,全面提高學生的綜合素質,增強學生學習能力,引導學生涉獵不同學科領域,讓學生獲得廣泛的知識,學習不同學科的思想和方法,充分發揮學生的主體作用,強化學生的個性優勢而設置的課程。
(二)專業課平臺
專業課平臺主要包括專業必修課和專業選修課,專業必修課又包括專業基礎課和專業課兩塊。專業基礎課是通識課和專業課的橋梁,是繼通識課之后學習專業課的過渡,主要包括工程材料與機制基礎,機械設計基礎,機械制造工藝學,機械CAD/CAM等課程。專業課的學習是整個課程體系的核心,前期通識課和專業基礎課的學習均是為專業課的學習服務,專業課的知識也是學生畢業之后繼續深造或就業的資本。專業課主要包括數控原理與系統,液壓與氣壓傳動,數控編程,模具設計和測試技術等。
專業選修課的開設是對專業課的拓展,旨在讓學生了解本專業的發展趨勢及前沿研究成果,拓展學生的視野,培養學生對本專業知識的創造性。主要包括先進制造技術,機械系統設計學,現代設計方法,機器人等。
專業課平臺所開設的課程均屬于理論課,這些課程的設置應以“適度、適應”為標尺,既不能片面追求學科知識的廣搏,也不能片面追求單一職業技能的精深,應盡力在有限的教育教學時間中發揮課程學習的最大效益。
(三)實踐教學平臺
實踐教學環節主要是培養學生的基本專業技能,包括專業理論課的課內實驗、基本技能課、專業技能課、集中實踐、畢業設計與實際訓練等。各實踐教學環節應達到的技能要求如下:如金工實習要求學生掌握車床(銑床)操作,鉗工、鑄工的基本要領;機床精度檢測要求學生掌握普通機床精度檢測方法及儀表使用和調整;數控編程與操作要求學生掌握數控編程方法及數控機床的加工操作;生產實習要求學生了解生產現場的生產組織、技術管理及典型零件制造的全過程;機械零件課程設計要求學生掌握常用機構和通用零件的工作原理,基本設計和計算方法,會使用手冊查閱參數;機械制造課程設計要求學生掌握典型設計、數控編程、機床調整及維修技術。實踐教學環節的開設可以使學生得到較為全面的綜合訓練,提高學生的解決工程實際問題和創新能力。
三、課程體系改革的方法
首先,對選用的教材把關。教材是學生賴以學習的根本,是教師與學生溝通的橋梁。因此,應盡量選擇國家規劃教材或著名高校出版的經典權威教材,同時,也要注意教材的時效性和工程性,避免教材內容與當今社會脫節。
其次,培養“雙師型教師”,要求教師既要具備理論教學的素質,還要具備實踐教學的素質。教師的業務能力與學生綜合職業能力和綜合技能培養工作息息相關,高水準的教師隊伍是高質量學生的保障。為此,教師在理論教學能力上不斷進步提高的同時,還必須向實踐教學方向發展。為此,學校要多形式、多渠道地安排教師到相關企業實習、鍛煉、參與實踐,使專業教師掌握專業技能,提高教師實踐能力,培養“雙師型教師”。另一方面,為加強“雙師型教師”培養,可采取校外進修與校內培訓相結合,脫產學習與業余自修相結合以及加強教師間教學經驗交流等措施,使教師適應課程綜合化改革的需要。
其三,教學是在教師指導下學生主動掌握知識、技能,發展思維的實踐活動,而教學方法是教法與學法的統一。教師應嘗試改革傳統的教學方式,避免填鴨式的滿堂灌教學方式,采用教師啟發、提問、學生討論的方式;設置情景的教學方式;以及充分利用視聽媒體,向學生提供聲像并茂的活躍課堂,增大信息量和專業技術前沿知識,激發學生的學習興趣和渴求知識的熱情。同時,可采取將學生帶到實習基地現場講解、學生親自動手進行拆裝實驗、結合實驗加以理論指導等方式,引導、幫助學生將理論知識應用到工程實踐中。■
參考文獻
[1]李楠.《美國大學通識教育課程考核的特點及其對我國高校思想政治理論課考試改革的啟示》.思想理論教育導刊.2011.5.
[2]于紅英.《改革傳統教學方式提高外語教學水平》山東教育科研.2011.4.
[3]全國中等職業技術學校機械類專業通用教材.《機械制圖》(第四版).
[4]湛蓊才《課堂藝術論》.湖南師范大學出版社.
【論文摘要】:機電一體化是一種復合技術,是機械技術與微電子技術、信息技術互相滲透的產物,是機電工業發展的必然趨勢。本文簡述了機電一體化技術的基本結構組成和主要應用領域,并指出其發展趨勢。
現代科學技術的發展極大地推動了不同學科的交叉與滲透,引起了工程領域的技術改造與革命。在機械工程領域,由于微電子技術和計算機技術的迅速發展及其向機械工業的滲透所形成的機電一體化,使機械工業的技術結構、產品機構、功能與構成、生產方式及管理體系發生了巨大變化,使工業生產由“機械電氣化”邁入了“機電一體化”為特征的發展階段。
一、機電一體化的核心技術
機電一體化包括軟件和硬件兩方面技術。硬件是由機械本體、傳感器、信息處理單元和驅動單元等部分組成。因此,為加速推進機電一體化的發展,必須從以下幾方面著手:
(一) 機械本體技術
機械本體必須從改善性能、減輕質量和提高精度等幾方面考慮。現代機械產品一般都是以鋼鐵材料為主,為了減輕質量除了在結構上加以改進,還應考慮利用非金屬復合材料。只有機械本體減輕了重量,才有可能實現驅動系統的小型化,進而在控制方面改善快速響應特性,減少能量消耗,提高效率。
(二) 傳感技術
傳感器的問題集中在提高可靠性、靈敏度和精確度方面,提高可靠性與防干擾有著直接的關系。為了避免電干擾,目前有采用光纖電纜傳感器的趨勢。對外部信息傳感器來說,目前主要發展非接觸型檢測技術。
(三) 信息處理技術
機電一體化與微電子學的顯著進步、信息處理設備(特別是微型計算機)的普及應用緊密相連。為進一步發展機電一體化,必須提高信息處理設備的可靠性,包括模/數轉換設備的可靠性和分時處理的輸入輸出的可靠性,進而提高處理速度,并解決抗干擾及標準化問題。
(四) 驅動技術
電機作為驅動機構已被廣泛采用,但在快速響應和效率等方面還存在一些問題。目前,正在積極發展內部裝有編碼器的電機以及控制專用組件-傳感器-電機三位一體的伺服驅動單元。
(五) 接口技術
為了與計算機進行通信,必須使數據傳遞的格式標準化、規格化。接口采用同一標準規格不僅有利于信息傳遞和維修,而且可以簡化設計。目前,技術人員正致力于開發低成本、高速串行的接口,來解決信號電纜非接觸化、光導纖維以及光藕器的大容量化、小型化、標準化等問題。
(六) 軟件技術
軟件與硬件必須協調一致地發展。為了減少軟件的研制成本,提高生產維修的效率,要逐步推行軟件標準化,包括程序標準化、程序模塊化、軟件程序的固化、推行軟件工程等。
二、機電一體化技術的主要應用領域
(一) 數控機床
數控機床及相應的數控技術經過40年的發展,在結構、功能、操作和控制精度上都有迅速提高,具體表現在:
1、 總線式、模塊化、緊湊型的結構,即采用多CPU、多主總線的體系結構。
2、 開放性設計,即硬件體系結構和功能模塊具有層次性、兼容性、符合接口標準,能最大限度地提高用戶的使用效益。
3、 WOP技術和智能化。系統能提供面向車間的編程技術和實現二、三維加工過程的動態仿真,并引入在線診斷、模糊控制等智能機制。
4、 大容量存儲器的應用和軟件的模塊化設計,不僅豐富了數控功能,同時也加強了CNC系統的控制功能。
5、 能實現多過程、多通道控制,即具有一臺機床同時完成多個獨立加工任務或控制多臺和多種機床的能力,并將刀具破損檢測、物料搬運、機械手等控制都集成到系統中去。
6、 系統的多級網絡功能,加強了系統組合及構成復雜加工系統的能力。
7、 以單板、單片機作為控制機,加上專用芯片及模板組成結構緊湊的數控裝置。
(二) 計算機集成制造系統(CIMS)
CIMS的實現不是現有各分散系統的簡單組合,而是全局動態最優綜合。它打破原有部門之間的界線,以制造為基干來控制“物流”和“信息流”,實現從經營決策、產品開發、生產準備、生產實驗到生產經營管理的有機結合。企業集成度的提高可以使各種生產要素之間的配置得到更好的優化,各種生產要素的潛力可以得到更大的發揮。
(三) 柔性制造系統(FMS)
柔性制造系統是計算機化的制造系統,主要由計算機、數控機床、機器人、料盤、自動搬運小車和自動化倉庫等組成。它可以隨機地、實時地、按量地按照裝配部門的要求,生產其能力范圍內的任何工件,特別適于多品種、中小批量、設計更改頻繁的離散零件的批量生產。
(四) 工業機器人
第1代機器人亦稱示教再現機器人,它們只能根據示教進行重復運動,對工作環境和作業對象的變化缺乏適應性和靈活性;第2代機器人帶有各種先進的傳感元件,能獲取作業環境和操作對象的簡單信息,通過計算機處理、分析,做出一定的判斷,對動作進行反饋控制,表現出低級智能,已開始走向實用化;第3代機器人即智能機器人,具有多種感知功能,可進行復雜的邏輯思維、判斷和決策,在作業環境中獨立行動,與第5代計算機關系密切。
三、機電一體化技術的發展前景
縱觀國內外機電一體化的發展現狀和高新技術的發展動向,機電一體化將朝著以下幾個方向發展:
(一) 智能化
智能化是機電一體化與傳統機械自動化的主要區別之一,也是21世紀機電一體化的發展方向。近幾年,處理器速度的提高和微機的高性能化、傳感器系統的集成化與智能化為嵌入智能控制算法創造了條件,有力地推動著機電一體化產品向智能化方向發展。智能機電一體化產品可以模擬人類智能,具有某種程度的判斷推理、邏輯思維和自主決策能力,從而取代制造工程中人的部分腦力勞動。
(二) 系統化
系統化的表現特征之一就是系統體系結構進一步采用開放式和模式化的總線結構。系統可以靈活組態,進行任意的剪裁和組合,同時尋求實現多子系統協調控制和綜合管理。表現特征之二是通信功能大大加強,一般除RS232等常用通信方式外,實現遠程及多系統通信聯網需要的局部網絡正逐漸被采用。未來的機電一體化更加注重產品與人的關系,如何賦予機電一體化產品以人的智能、情感、人性顯得越來越重要。機電一體化產品還可根據一些生物體優良的構造研究某種新型機體,使其向著生物系統化方向發展。
(三) 微型化
微型機電一體化系統高度融合了微機械技術、微電子技術和軟件技術,是機電一體化的一個新的發展方向。國外稱微電子機械系統的幾何尺寸一般不超過1cm3,并正向微米、納米級方向發展。由于微機電一體化系統具有體積小、耗能小、運動靈活等特點,可進入一般機械無法進入的空間并易于進行精細操作,故在生物醫學、航空航天、信息技術、工農業乃至國防等領域,都有廣闊的應用前景。目前,利用半導體器件制造過程中的蝕刻技術,在實驗室中已制造出亞微米級的機械元件。
(四) 模塊化
模塊化也是機電一體化產品的一個發展趨勢,是一項重要而艱巨的工程。由于機電一體化產品種類和生產廠家繁多,研制和開發具有標準機械接口、電氣接口、動力接口、信息接口的機電一體化產品單元是一項復雜而重要的事,它需要制訂一系列標準,以便各部件、單元的匹配和接口。機電一體化產品生產企業可利用標準單元迅速開發新產品,同時也可以不斷擴大生產規模。
(五) 網絡化
網絡技術的飛速發展對機電一體化有重大影響,使其朝著網絡化方向發展。機電一體化產品的種類很多,面向網絡的方式也不同。由于網絡的普及,基于網絡的各種遠程控制和監視技術方興未艾,而遠程控制的終端設備本身就是機電一體化產品。
(六
) 綠色化
工業的發達使人們物質豐富、生活舒適的同時也使資源減少,生態環境受到嚴重污染,于是綠色產品應運而生。綠色化是時代的趨勢,其目標是使產品從設計、制造、包裝、運輸、使用到報廢處理的整個生命周期中,對生態環境無危害或危害極小,資源利用率極高。機電一體化產品的綠色化主要是指使用時不污染生態環境,報廢時能回收利用。綠色制造業是現代制造業的可持續發展模式。
綜上所述,機電一體化技術是眾多科學技術發展的結晶,是社會生產力發展到一定階段的必然要求。它促使機械工業發生戰略性的變革,使傳統的機械設計方法和設計概念發生著革命性的變化。大力發展新一代機電一體化產品,不僅是改造傳統機械設備的要求,而且是推動機械產品更新換代和開辟新領域、發展與振興機械工業的必由之路。
參考文獻
1、 李運華.機電控制[M].北京航空航天大學出版社,2003.
2、 芮延年.機電一體化系統設計[M].北京機械工業出版社,2004.
3、 王中杰,余章雄,柴天佑.智能控制綜述[J].基礎自動化,2006(6).
關鍵詞:微納米三坐標測量機;量塊;等效直徑
DOI:10.16640/ki.37-1222/t.2016.22.254
0 引言
隨著微細加工技術和微電子機械系統技術的快速發展,多種多樣的微型器件相機被加工出來,如微型渦輪、微型針陣列、微型馬達以及汽車發動機中的噴油嘴。這些器件的尺寸形狀對測量系統提出更高的要求,因此,研制高精度微納米三坐標測量機來實現對被測件的高精度測量。日本東京大學Kiyoshi Takamasu首次提出了區別于傳統三坐標測量機的納米三坐標測量機應具備的一些技術指標。據此,國內外一些大學和研究所開始研制微納米三坐標測量機,例如德國聯邦物理技術研究所(PTB)研制的Special CMM、日本東京大學Takamatsu 教授于1995年開始研制的Nano-CMM、英國國家物理實驗室(NPL)研制的小型三維測量機、瑞士聯邦計量局(METAS)研制的Ultra precision CMM、臺灣大學范光照教授研制的Nano-CMM[1]。此外,中國精密機械研究所(303所)、中國長城計量測試研究院、天津大學、清華大學等許多科研院所和高校都對微納米三坐標測量機進行了深入的研究。
本文研制的微納米三坐標測量機是來源于科技部“863”計劃重點項目,整個微納米三坐標測量機系統是由微納米接觸掃描式探頭[2](測頭是直徑為1mm的紅寶石球)、“331”原則工作臺[3, 4]以及激光回饋干涉儀[5]的測量系統等部分組成。
1 微納米三坐標測量機系統
文中研制一臺新型微納米三坐標測量機其測量范圍為50×50×50mm,各軸測長的分辨率為1nm,測量系統設計總不確定度≤100nm。本文研究的微納米三坐標測量機主要部分包括零阿貝誤差的工作臺、微納接觸掃描式探頭以及準共路微片激光器回饋干涉儀。其中,零阿貝誤差工作臺是基于“331”原則(即:三軸標尺線相互垂直并交于一點,并以此三軸測量線為基準建立三維坐標系;由x、y標尺線構成的測量面與x、y軸導軌導向面相互重合;探頭中心點與各軸標尺線交點重合,簡稱三線共點、三面共面、點面重合)設計的;接觸掃描式探頭三軸可以實現20μm的測量范圍以及1nm測量分辨率;微片激光回饋干涉儀可以實現50mm的量程,位移分辨率優于0.1~1nm。圖1是微納米三坐標測量機的實物圖。
2 探頭測端等效直徑測量及誤差分析
本文的微納米三坐標測量機使用的是接觸式探頭,采點原理是通過二次觸發的方式,即在對被測件進行測量時,探頭第一時間碰到被測件時,會繼續運動一定的位移直至達到某一觸發閾值才會記錄下該點的坐標。這段接觸后行走的距離則被稱為探頭觸發的預行程,并且包括了測桿的力變形。由于探頭在接觸被測件時,測桿會發生變形、紅寶石測球與被測件之間的摩擦力以及紅寶石測球的形貌等因素都會對最終的測量精度有影響,并且測量內尺寸和外尺寸引起的影響是有區別的。設為d0為紅寶石測球直徑。
在尺寸測量過程中,被測長度為L1,被測件的實際尺寸:,測端的等效直徑為d:。因此探頭在使用前都要對測頭進行測端等效直徑的標定[6]。通過上述計算方法,便可以獲得探頭的測端等效直徑,以降低測桿變形和探頭觸發預行程等因素對測量的影響。
本文使用的是被檢定過長度為10mm和20mm兩種一等量塊作為測量基準,這兩種量塊的檢定值分別為10.000045mm和19.999998mm。由于本文中的微納米三坐標測量機采點過程中只設計特殊角度,所以只把量塊在幾個特殊角度(0?、30?、45?、60?、90?、120?、135?、150?)之間切換。量塊的測量方法:在量塊的一個平面上均勻選取六個點,得到此平面的最小二乘平面,在另一個平面上中間位置選取一點,該點到最小二乘平面的距離作為該量塊的長度測量值。量塊測量示意圖如圖4所示。
首先,按照上述測量方法測量檢定值為10.000045mm的一等量塊。根據長度測量原理及測端等效直徑的測量原理,得到探頭在各個方向的等效直徑。表1是10mm厚00級量塊特殊方向的長度測量值。
為了驗證測端等效外徑的修正效果,本文又進行長度檢定值19.999998mm量塊特殊方向的測量實驗,并用長度10mm的量塊測端等效直徑對長度20mm量塊測端等效直徑進行補償得其誤差,其測得值如表2所示。
由實驗數據處理結果可知,這種方法在一定程度上減小量塊長度測量誤差,但使用上述所述的補償方法各個特殊方向還會存在一定的誤差,這種誤差是由多種因素引起,包括各個方向的測量力的微弱變化、探頭與被測件之間摩擦力變化以及環境因素等,為了降低這種影響,在實驗過程需要采用多次測量方法,來降低其對測量結果的影響.
3 結束語
通過對比的實驗方法在測量量塊長度的實驗中,可以得到很高的測量精度,但是還存在一定的殘余誤差,帶來這些誤差的主要原因有:測量方法帶來的誤差;標定的數學模型引入的誤差;探頭本身引入的誤差,包括各個方向上測力的不同,以及探頭在各個方向上的的重復性的差異;測量機本身的誤差;外界環境對測量結果產生的影響。
參考文獻:
[1]A.Küng,F.Meli,R.Thalmann.Ultraprecision micro-CMM using a low force 3D touch probe[J]. Measurement Science and Technology,2007(18):319-327.
[2]程方,費業泰.納米三坐標測量機接觸式測頭觸發控制[J].光學精密工程,2010,18(12):2603-2609.
[3]黃強先,余夫領,宮二敏等.零阿貝誤差的納米三坐標測量機工作臺及誤差分析[J].光學精密工程,2013,21(03):664-671.
[4]余夫領.微納米三坐標測量機誤差修正與實驗研究[D].合肥工業大學碩士論文,2013.
[5]張松,張書練,任舟.采用Nd:YAG微片激光器的激光回饋干涉儀的研制[J].紅外與激光工程,2011,40(10):1914-1917,1927.