首頁(yè) > 期刊 > 自然科學(xué)與工程技術(shù) > 基礎(chǔ)科學(xué) > 物理學(xué) > 動(dòng)物學(xué)研究 > Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY,a novel antimicrobial peptide identified from the brown frog,Rana kunyuensis 【正文】
摘要:Rana kunyuensis is a species of brown frog that lives exclusively on Kunyu Mountain,Yantai,China.In the current study,a 279-bp cDNA sequence encoding a novel antimicrobial peptide (AMP),designated as amurin-9KY,was cloned from synthesized double-strand skin cDNA of R.kunyuensis.The amurin-9KY precursor was composed of 62 amino acid (aa) residues,whereas the mature peptide was composed of 14 aa and contained two cysteines forming a C-terminal heptapeptide ring (Rana box domain) and an amidated C-terminus.These structural characters represent a novel amphibian AMP family.Although amurin-9KY exhibited high similarity to the already identified amurin-9AM from R.amurensis,little is known about the structures and activities of amurin-9 family AMPs so far.Therefore,amurin-9KY and its three derivatives (amurin-9KY1-3) were designed and synthesized.The structures and activities were examined to evaluate the influence of C-terminal amidation and the heptapeptide ring on the activities and structure of amurin-9KY..Results indicated that C-terminal amidation was essential for antimicrobial activity,whereas both C-terminal amidation and the heptapeptide ring played roles in the low hemolytic activity.Circular dichroism (CD) spectra showed that the four peptides adopted an α-helical conformation in THF/H2O (v/v 1∶1) solution,but a random coil in aqueous solution.Elimination of the C-terminal heptapeptide ring generated two free cysteine residues with unpaired thiol groups,which greatly increased the concentration-dependent anti-oxidant activity.Scanning electron microscopy (SEM) was also performed to determine the possible bactericidal mechanisms.
注:因版權(quán)方要求,不能公開(kāi)全文,如需全文,請(qǐng)咨詢雜志社